184QPS/W 64Mb/mm² 3D Logic-to-DRAM Hybrid Bonding with Process-Near- Memory Engine for Recommendation System

<u>Dimin Niu¹</u>, Shuangchen Li¹, Yuhao Wang¹, Wei Han¹, Zhe Zhang², Yijin Guan², Tianchan Guan³, Fei Sun¹, Fei Xue¹, Lide Duan¹, Yuanwei Fang¹, Hongzhong Zheng¹, Xiping Jiang⁴, Song Wang⁴, Fengguo Zuo⁴, Yubing Wang⁴, Bing Yu⁴, Qiwei Ren⁴, Yuan Xie¹

¹Alibaba DAMO Academy, Sunnyvale, CA, ²Alibaba DAMO Academy, Beijing, China, ³Alibaba DAMO Academy, Shanghai, China, ⁴UnilC, Xi'an, China

西安紫光国前

Self Introduction

Education Background

- B.S and M.S degree in electronic engineering from Tsinghua University
- Ph.D. degree in computer engineering from Pennsylvania State University

Work Experience

- Computing Technology Lab, DAMO Academy, Alibaba since 2019
- Memory Solutions Lab, Samsung Semiconductor 2014 2019

Research Interests

 Computer Architecture, Computing in/with Memory, Non-volatile memory

Motivation

System and Chip Architecture

- 3D Logic-to-DRAM Hybrid Bonding
- PNM Engine for Recommendation System
- Measurement Results
- Conclusion

Motivation

- System and Chip Architecture
 - 3D Logic-to-DRAM Hybrid Bonding
 - PNM Engine for Recommendation System
- Measurement Results
- Conclusion

Memory Wall in Al Era

Al model computation requirement

3.1x / 2 years Hardware computation capability

1.4x / 2 years Memory system capability

Memory-Bound Applications

Natural Language Processing

State-of-the-art PNM/CIM Solutions

29.1: 184QPS/W 64Mb/mm² 3D Logic-to-DRAM Hybrid Bonding with Process-Near- Memory Engine for Recommendation System

Motivation

System and Chip Architecture

- 3D Logic-to-DRAM Hybrid Bonding
- PNM Engine for Recommendation System
- Measurement Results

Conclusion

3D Logic-to-DRAM Hybrid Bonding

- Logic-to-DRAM face-to-face Hybrid wafer Bonding
- 25nm DRAM technology with 36 x 1Gbits array
- 1Gbits DRAM core with 8 banks and on-chip ECC
- Each bank with 128 bits I/O, and implemented with HB

Hybrid-bonding Interconnection

- Cu-Cu direct fusion with low bonding temperature (< 350°C)
- Up to 110,000/mm² integration density
- Small pitch size of 3µm
- Align marker with high precision of 0.35µm

Motivation

System and Chip Architecture

- 3D Logic-to-DRAM Hybrid Bonding
- PNM Engine for Recommendation System
- Measurement Results

Conclusion

Typical Recommendation System

*Item feature can be extracted from different methods. Here is a typical case for image queries.

• A two-step Recommendation System

- Feature Generation
 - Classification, object detection and feature extraction
 - Computation-bound
 - Typically executed on GPU
- Matching & Ranking
 - Coarse-grained matching and fine-grained ranking
 - Memory-bound
 - Typically executed on CPU and commercial DRAM as external memory
 - Consumes most latency (89.87%) and energy (82.97%)
 - Requires high-bandwidth, large-capacity and energyefficient memory

Ranking & Matching

- Coarse-grained Matching
 - Coarse-grained features with 1bit x 512 dimensions
 - Matching: L2 distance calculation
 - Top-1000 items selected from 40K items
- Fine-grained Ranking
 - Fine-grained features with 8bits x 1024 dimensions
 - Similarity prediction: three-layer MLP (2048-256-64-1)
 - Top-100 ranking results selected from 1K items

Overall Architecture

- Memory
 - 4 x 1Gb blocks with 4096 bits I/O
 - 38.4GB/s on-chip bandwidth per block
- Compute
 - Match Engine: Coarse-grained Matching
 - Neural Engine: Fine-grained Ranking
- Dual-mode Interface

Match Engine Architecture (1)

Build-in performance evaluation
 mode & performance counter

Match Engine Architecture (2)

- **Distance Calculator**
 - Compare the similarity between input
 - Compute the Hamming distance of two 512-bit features
 - Filtered by rot of max-heap

Match Engine Architecture (3)

Top-k Engine

- Maintain a max-heap hardware block
- Receives input every two cycles
- Alternately heapifies nodes in odd layers and even layers
- Stores the top-1000 matching results

Neural Engine Architecture (1)

Vector Process Unit

- Activations
 - LUT based design
 - Supports GeLU & Exp
- Transpose
 - Transpose 16x16 matrix with ping-pong array
 - Implemented with 2D register file array
 - Supports row-based writes and column-based reads

Neural Engine Architecture (2)

Interface Bridge & Debug

- Support both single-channel mode and lockstep-mode
- Read/write counter to support burst requests
- Support cycle-wise debug with clock gating

Lock-step DEBUG

Motivation

System and Chip Architecture

- 3D Logic-to-DRAM Hybrid Bonding
- PNM Engine for Recommendation System

Measurement Results

Conclusion

Die Photo and Summary

DRAM Die					
Technology	25nm				
Area	Total*	602 . 22 mm ²			
	Neural Engine	32 mm²			
	Match Engine	32 mm²			
Voltage	1.1 V				
Frequency (max)	150 MHz				
Power	300 mW per 1Gb				
Bandwidth**	153.60 GB/s / 1.38 TB/s				

Logic Die						
Technology	55nm					
	Total*	602.22 mm ²				
Area	Neural Engine	5.90 mm ²				
	Match Engine	7.02 mm ²				
# of MC	16 per IP					
Voltage	1.2 V					
Frequency	300 MHz					
Power	977.70 mW					
Precision	INT8					

29.1: 184QPS/W 64Mb/mm² 3D Logic-to-DRAM Hybrid Bonding with Process-Near- Memory Engine for Recommendation System

Evaluation Platform

- Test board capable to mount up to 4 HB
- FPGA board responsible to write/read data and generate configuration to the chip register

Performance

	CPU - DRAM*	This work	
Logic Technology	14 nm	55 nm	
Frequency	2.20 GHz	300 MHz	
Area	4294 mm ²	64 mm² (4Gb)	
Precision	INT8	INT8	
Power**	70.17 W (TDP: 125 W)	2.178 W	

* CPU: Intel Xeon Gold 5220@2.20GHz, tested on Pytorch ** CPU power measured by PyRAPL

 Measurement vs. Peak: ~20% initialization and memory subsystem overhead

© 2022 IEEE International Solid-State Circuits Conference 29.1: 184QPS/W 64Mb/mm² 3D Logic-to-DRAM Hybrid Bonding with Process-Near- Memory Engine for Recommendation System QPS:

QPS: Queries per second 24 of 27

	2D CIM *	2D PNM **	2.5D PNM ***	3D TSV (Hybrid) ****	This work
Type of Memory	SRAM	DDR4	HBM2	HBM2	LPDDR4
Technology (Memory/Logic)	16nm	2xnm / 2xnm	1y# / 7nm	20nm / 20nm	25nm / 55nm
Capacity	4.5 Mb	8GB / DIMM	80GB	6GB / cube	4.5GB
Bandwidth	-	128GB/s / DIMM	1935GB/s	1200GB/s / cube [#]	38.4GB/s / 1Gb
Frequency (Logic)	200MHz	500MHz	1410MHz	300MHz	300MHz
Bandwidth/Capacity (a.u.)	-	16	24.2	200	307
Energy	-	~25pJ/bit	4.47pJ/bit	2.75pJ/bit	0.88pJ/bit

#Estimated

- High off-chip bandwidth
- High bandwidth per capacity
- Low energy per bit

- * H. Jia et al, ISSCC 2021.
 ** F. Devaux et al, Hotchip 2019
 *** J. Choquette et al, Hotchip 2020
- **** Y. C. Kwon et al. ISSCC 2021

Motivation

System and Chip Architecture

- 3D Logic-to-DRAM Hybrid Bonding
- PNM Engine for Recommendation System
- Measurement Results
- Comparison

Conclusion

Conclusion

- Memory-bound application can significantly benefit from processnear-memory and computing-in-memory
- A 3D Logic-to-DRAM Hybrid Bonding Chip with Process-Near-Memory Engine for Recommendation System is demonstrated featuring with:
 - High-bandwidth and energy-efficient memory with hybrid bonding
 - High-throughput streaming processing units for matching and ranking
 - **2.4GB/s/mm²** bandwidth density and **0.88pJ/bit** energy consumption
 - ~10x performance improvement and over 300x energy-efficiency improvement over conventional CPU+DRAM system