המאמר באדיבות חברת יבמ
כבר קרוב ל-50 שנה שמחשבים הפכו להיות חלק מהותי מחיינו אך כעת עומדת להכנס לחיינו טכנולוגית מיחשוב חדשה אשר עשוי לשנות את העולם ביכולות ובביצועים שלא היו קיימים עד כה. מחשוב קוונטי הוא דור חדש של טכנולוגיה המשתמש בחומרת מחשבים ואלגוריתמים המנצלים את מכניקת הקוונטים כדי לפתור בעיות מורכבות שמחשבים קלאסיים אינם יכולים לפתור או שאינם יכולים לפתור מספיק מהר.
מחשבי הקוונטום של חברת יבמ מבוססים על חומרה קוונטית אמיתית ההופכת את הטכנולוגיה הקוונטית לזמינה למאות אלפי מפתחים. מאמר זה עוסק בטכנולוגיה הטרנספורמטיבית הזו וביתרונותיה לעולם עיבוד הנתונים.
מדוע אנחנו צריכים מחשבים קוונטיים?
כאשר מדענים ומהנדסים נתקלים בבעיות קשות, הם פונים למחשבי-על. מדובר במחשבים קלאסיים גדולים מאוד הכוללים לרוב אלפי ליבות מעבד ומעבדים גרפיים קלאסים( GPUs) המסוגלים להריץ חישובים גדולים מאוד ונעזרים גם בבינה מלאכותית מתקדמת. עם זאת, אפילו מחשבי-על הם מכונות מבוססות קוד בינארי הנשענות על טכנולוגיית הטרנזיסטורים של המאה העשרים. כאשר מדובר בעיבודים בדרגה גבוהה של מורכבות גם מחשבי העל נאבקים כדי להתמודד עם אותן בעיות חישוביות.
בעיות חישוביות מורכבות הן בעיות עם הרבה משתנים המקיימים אינטראקציה בדרכים מסובכות. למשל מודל התנהגות של אטומים בודדים במולקולה היא בעיה מורכבת, בגלל כל האלקטרונים השונים באינטראקציה זה עם זה. זיהוי דפוסים עדינים של הונאה בעסקאות פיננסיות אף הוא מורכב מאד. כלומר יש בעיות שאפילו המחשבים הקלאסים החזקים ביותר של ימנו אינם יודעים לפתור.
מדוע מחשבים קוונטיים מהירים יותר?
בואו נסתכל על דוגמה הממחישה כיצד מחשבים קוונטיים יכולים להצליח במקום שבו מחשבים קלאסיים נכשלים?
מחשב קלאסי עשוי להיות מצוין במשימות קשות כמו מיון מסד נתונים גדול של מולקולות. אבל הוא נאבק לפתור בעיות מורכבות יותר, כמו הדמיה של איך המולקולות האלה מתנהגות.
כיום, אם מדענים רוצים לדעת איך מולקולה תתנהג הם חייבים לסנתז אותה ולהתנסות איתה בעולם האמיתי. אם הם רוצים לדעת כיצד תיקון קל ישפיע על ההתנהגות שלה, הם צריכים לסנתז את הגרסה החדשה ולהפעיל את הניסוי שלהם מחדש. זהו תהליך יקר הגוזל זמן רב ומונע התקדמות בתחומים מגוונים כמו רפואה או תכנון שבבים מתקדמים המורכבים ממילארדי טרנזיסטורים המייצגים לפעמים מאות מליוני קישורים בינהם.אך לאף מחשב על קלאסי אין את זיכרון העבודה הדרוש כדי לטפל בכל התמורות האפשריות של התנהגות מולקולרית.
אלגוריתמים קוונטיים נוקטים בגישה חדשה לסוגים של בעיות מורכבות כאלה עי" יצירת מרחבי חישוב רבי-ממדיים המסוגלים לבצע הדמיה מולקולרית בכל הצורות האפשריות.
איך מחשבים קוונטיים עובדים?
מעבד IBM Quantum הוא שבב לא גדול בהרבה מזה הנמצא במחשבים ניידים. ומערכת חומרה קוונטית היא בערך בגודל של מכונית, המורכבת ברובה ממערכות קירור כדי לשמור על המעבד המוליך בטמפרטורת הפעולה הקרה במיוחד שלו.
מעבד קלאסי משתמש בביטים קלאסיים לביצוע פעולותיו. מחשב קוונטי משתמש בקיוביטים (CUE-bits) כדי להפעיל אלגוריתמים קוונטיים רב-ממדיים.
סביר להניח שלמחשב השולחני שלכם מספיק מאוורר רגיל כדי לקרר אותו ולאפשר לו לעבוד כראוי. המעבדים הקוונטיים צריכים להיות קרים מאוד – למען הדיוק כמאית המעלה מעל האפס המוחלט – כדי למנוע "דה-קוהרנטיות", או לשמור על המצבים הקוונטיים שלהם. כדי להשיג זאת, יש צורך להשתמש בנוזלי-על מקוררים במיוחד. בטמפרטורות נמוכות אלו חומרים מסוימים מציגים השפעה מכאנית קוונטית חשובה: אלקטרונים נעים דרכם ללא התנגדות. זה הופך אותם ל"מוליכים". כאשר אלקטרונים עוברים דרך מוליכים הם מתאימים זה לזה ויוצרים "זוגות קופר". זוגות אלה יכולים לשאת מטען על פני מחסומים, או מבודדים, באמצעות תהליך המכונה מינהור קוונטי. שני מוליכים הממוקמים משני צידיו של מבודד יוצרים צומת ג'וזפסון.
כיצד ניתן להפוך מחשבים קוונטיים לשימושיים?
נכון לעכשיו, מחשב הקוונטום של יבמ מוביל את העולם בחומרה ותוכנה למחשוב קוונטי. מפת הדרכים של יבמ כוללת תוכנית ברורה ומפורטת להרחבת מעבדים קוונטיים, במטרה להתגבר על בעיית קנה המידה ולבנות את החומרה הדרושה לנטרול רעשים ומחשוב קוונטי יעיל.
נושא הרעשים הוא קריטי במיוחד במחשוב קוונטי מכיוון שאפילו רעש סביבתי קל כמו רעידות, תנודות טמפרטורה או הפרעות אלקטרומגנטיות עלולות להכניס שגיאות בקיוביטים אשר ישבשו את החישובים ויובילו לתוצאות לא מדויקות. ככל שלמערכת יש יותר קיוביטים, כך היא הופכת להיות רגישה יותר לרעש. לכן חלק גדול מהעבודה בתחום המחשוב הקוונטי מוקדשת כעת למניעת השפעת הרעשים במחשבים קוונטיים וליצוב התוצאות המתקבלות בהם.